\star

MODUL PINTAS TINGKATAN 5

Peperiksaan Percubaan Tahun 2019

Skema Jawapan Fizik

Kertas 2 4531/2

Jawapan Pintas Trial T5 P2

No 1	Scheme	Sub Mark	Total Mark
(a)(i)	acceleration	1	1
(a)(ii)	Displacement / distance	1	1
(b)	Constant/uniform acceleration // increasing velocity	1	1
(c)	7 s	1	1
	Total		4

No 2	Scheme	Sub Mark	Total Mark
(a)	Less dense	1	2
	Narrow tube	1	
(b)	P = 76 +9 = 85 cm Hg = $\frac{85}{100}$ x 13600x10 = 115 600 Pa	1 1 1	3
	Total		5

No 3	Scheme	Sub Mark	Total Mark
(a)	State the meaning of radioactivity Spontaneous decay of unstable nucleus accompanied by the emission of radioactive rays	1	1
(b)	State the method finding half-life Show on the graph how the half-life is determined State the half-life with unit Half-life = 14 //15 days	1	2
(c)	State the method to find the activity $200 \rightarrow 100 \rightarrow 50$ State the activity 28//30 days	1	2
(d)	Complete the equation correctly $ \begin{array}{c} 32\\ 16 \end{array} P \longrightarrow S^{32} + e^{0}\\ 17 & -1 \end{array} $	1	1
	Total		6

No 4	Scheme		Total Mark
4(a)(i)	The ratio of sine of incident angle to sine of refracted angle	1	1
(ii)	Mark and label correctly	1	1
(iii)	1	1	2
	sin45 ⁰ 1.4142	1	
(iv)	Any value less than 45 ⁰	1	1
(b)	Total Internal Reflection	1	1
(c)	They have different refractive index // optical density // critical angle	1	1
	Total		7

No 5	Scheme	Sub Mark	Total Mark
(a)	A region where a magnetic force acts on it	1	1
(b)(i)	The current in both diagrams are the same	1	1
(b)(ii)	The distance of wire PQ in diagram 5.3 is further	1	1
(b)(iii)	The magnetic field in diagram 5.3 is higher	1	1
(c)(i)	The higher the strength of magnetic field, the further the distance of wire PQ	1	1
(c)(ii)	The higher the strength of magnetic field, the greater the forced produced	1	1
(d)(i)	Vibrates // stationary	1	1
(d)(ii)	AC changes its direction alternately	1	1
	Total		8

No 6	Scheme		Total Mark
(a)	(i) transverse	1	2
	(ii) perpendicular	1	
(b)	(i) the size of the gap 6.1 larger than 6.2	1	2
	(ii) the spreading of the waves after the gap 6.1 less than 6.2 /	1	
	6.2 is more circular than 6.1 / diffraction 6.2 is more obvious		
	than 6.1		
(c)	(i) the larger the size of the gap, the lower the spreading of the	1	2
	waves after the gap / less circular the waves		
	(ii) the more the spreading of the waves / more obvious the	1	
	diffraction of waves, the smaller the amplitude of the waves,		
(d)	(i) diffraction	1	2
	(ii) the wavelength of light waves is too small // diffraction	1	
	does not occur		
	Total		8

No 7	Scheme	Sub Mark	Total Mark
(a)	Ratio of potential difference to current Nisbah antara beza keupayaan dengan arus	1	1
(b)(i)	Series (Diagram 7.1) Sesiri (Rajah 7.1) $R = 2 + 2 + 2 = 6 \Omega$	1	3
	Parallel (Diagram 7.2) Selari (Rajah 7.2) $\frac{1}{R} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	1	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	
(c) (i)	Bulbs in Diagram 7.2 are brighter Mentol-mentol dalam Rajah 7.2 lebih cerah	1	1
(c)(ii)	The effective resistance is low// more current flows Rintangan berkesan rendah // lebih arus yang mengalir	1	1
(d)(i)	-More number of dry cells Lebih bilangan se lkering	1	2
	-More current flows // more voltage Lebih arus yang mengalir // lebih voltan	1	
(d)(ii)	-Series Sesiri	1	2
	- Produce higher EMF	1	
	Tota		10

No 8	Scheme	Sub Mark	Total Mark
(a)	Specific latent heat of vaporisation	1	1
	Haba pendam tentu pengewapan		
(b)	1. Molecules become more closely packed/the bonds between the molecules is formed	1	
	2. Specific latent heat of fusion is released	1	
	3. Average kinetic energy of the molecules does not change 1. Molekul-molekul menyusun semula menjadi lebih rapat/	1	
	ikatan antara molekul terbentuk		
	2. Haba pendam tentu pelakuran dibebaskan3. Purata tenaga kinetic molekul tidak berubah		Max: 2
(c)(i)	– high	1	2
	tinggi		
	- can absorb more heat from the food	1	
	Boleh menyerap lebih haba daripada makanan		
(c)(ii)	- low	1	2
	rendah	1	
	- Can vaporise easily		
	Senang mengewap		
(c)(iii)	L	1	1
(d)(i)	Pt = 750X3X60	1	2
	$= 1.35 X 10^5 J$	1	
(d)(ii)	$Q = mc\theta$		2
	$1.35X10^5 = 2XcX40$	1	
	$c = 1687.5Jkg^{-10}C^{-1}$	1	

		Tot	tal	12
No 9		Scheme	Sub Mark	Total Mark
(a)	A push or a pull / quantity object // change velocity / Reject : F = ma / rate of ch	1	1	
(b)(i)	 Depth of sinking in Diagonal The force applied in both The contact surface aread Diagram 9.2 	gram 9.1 is more than in 9.2	1 1 1 g. 1	5
(b)(ii)	 When force is exerted of [P=F/A] Pressure will be transmin parts of the enclosed line The same pressure exert 4. Large piston will produce 	ed 1 1 1 1	4	
(c)	Aspect Big squeeze bulb Elastic squeeze bulb Narrow mid tube Narrow noozle plastic	ExplanationMore air can be squeezedCan return to its original shape easilyAir flows at high speedHigher pressurelighter	2 2 2 2 2 2 2	10
		Tot	tal	20

No 10	Scheme	Sub Mark	Total Mark
(a)(i)	State the potential difference across X and Z 6V	1	1
(ii)	State the total resistance across X and Z $10k\Omega + 20k\Omega // 30 k\Omega$	1	1
(ii)	Show the correct substitution $I_{xz} = \frac{6}{30x10^3}$	1	2
	Answer with correct unit 2 x 10 ⁻⁴ A	1	
(iv)	Show the correct substitution $V_{BE} = \frac{10 \times 10^{3}}{30 \times 10^{3}} \times 6$	1	2
	State the potential difference across YZ 2V	1	
(v)	Show the function correctly To protect transistor (from high I)	1	1
(b)	Give the explanation correctly	1	

	C C	R / R_x high / R_{LDR} high / R_{TU} high in	1	
	dark 2. potential difference across YZ more / more V _{BE} / high V _{BE} /			
	V_x high high V_B / high	1 1		
	3. I_b / base current flow			
	0	urrent flows / transistor activated /		
		current flows through LED / diode		Max : 3
	M1-State the	M2-State the reason for MI	2	10
	electronic	Thermistor is sensitive to heat //		
	component at	the resistance of thermistor		
	terminal XY	decreases when the temperature		
	Thermistor at R ₁	increases // Its resistance varies		
	position	with temperature	2	
	M3-State the	M4-State the reason for M3	2	
	electronic	Potential difference across R_1 is		
	component at terminal YZ	high when the room is hot /		
	resistor R_1 at LDR	Resistance of R_1 is higher than thermistor // potential difference		
	position	thermistor // potential difference across thermistor is low		
(c)	position	across thermistor is low		
(0)	M5-State the	M6-State the reason for M5	2	
	electronic	to convert electrical energy to		
	component at	sound energy		
	LED			
	Alarm			
	M5-State the	M6-State the reason for M5	2	
	electronic	Relay can switch on the alarm / to		
	component at	switch on the secondary circuit		
	LED			
	Relay at LED			
	position			
	Symbol - termistor		2	
		TOTAL		20

No 11	Scheme	Sub Mark	Total Mark
(a)	Hooke's law	1	1
(b)	 Explanation includes <u>Thrust force</u> of the train is used to <u>compress spring</u> 	1	4
	Lengthen the time of impact	1	
	 reduce <u>impulsive force</u>, 	1	
	• <u>Kinetic energy</u> of the train compresses spring and becomes	1	
(-)	elastic potential energy stored in the spring	-	10
(c)	Characteristic Explanation		10
	Small diameterStiff spring //Large spring constant //[1]Small length of compression// Harder to	2	
	compress [1] Thick spring wire Stiff spring //Large spring constant // Small length of compression// Harder to	2	
	compress [1] Rubber Longer time of impact // reduce [1] impulsive force [1] High density Withstand higher force // more compact [1] [1]	2	
	Q is chosen	2	
	because small diameter, thicker spring wire, rubber and high density.	1 1	
(d)	(i) $F = m a$		5
	$= (3.0 \text{ kg}) (0.5 \text{ m s}^{-2})$		
	= 1.5 N	1	
	(ii) From the graph, spring constant, $k = 20 \text{ N} / 4 \text{ cm}$		
	$k = 5 \text{ N cm}^{-1}$	1	
	The compression of the spring, $x = F/k$		
	$= (1.5 \text{ N}) / 5 \text{ N cm}^{-1} = 0.3 \text{ cm}$	1	
	(iii) $E_P = \frac{1}{2} F_X = \frac{1}{2} (1.5 \text{ N}) (0.003 \text{ m})$		
	= 0.00225 J	1	
		1	
	Total		20

No 12	Scheme		Sub Mark	Total Mark
(a)(I) Numb	Number of complete oscillations in one second.			1
(a)(ii) •	• Frequency is inversely proportional to wavelength			4
•	• High pitch sound has high frequency and short wavelength			
•	• Short wavelength sound is more difficult to be diffracted by the corner. Therefore, only student U can hear the sound clearly.			
•	Low pite easier to	ch sound has long wavelength sound and it is be diffracted by the corner. Therefore, all the can hear the sound clearly.	1	
(b)(i) 8 x 50		· · · · · ·		1
	400 ms		1	
(b)(ii) 1400	$400 \text{ x} \frac{1}{2} \text{ x(b)}$ (i) answer			2
	280 m ²			
(b)(iii) 1400	iii) $\frac{1400}{35000}$ 0.04 m			2
3500				
(c) Cha	aracteristic	Reason		10
Cor	ncave	Reflected sound is converged to the auditorium	1 1	
Sof	t board	Reduce reflection of sound	-1,1 -1,1	
Lar	ge	The distance between two loud sound is small	1,1	
	ance		1,1	
Hig	h	Less reflection by obstacles		
Q	Q			
	Because it has concave ceiling, uses soft board, large distance			
betwe	en speaker	s and high position for speaker		
		Total		20